今天和興凱鼎小編一起來看看功率電感的發展趨勢,我們從以下幾個方面分析
1.精細功率電感器
在便攜式電子產品的電源供應器設計當中,面臨的最大挑戰是,既要提高電源供應器的工作效率還要減小它的尺寸,也就是說要設計在電力供應設計中最好使用最小的電感器。解決此難題的辦法之一是,提高DC/DC轉換器的開關頻率,這是影響低電感和小尺寸元件的關鍵。由負荷波動引起的瞬態響應較低的電感值是抵消了更好的。在這種情況下,伴隨著負載波動所引起的更快的瞬態響應,低電感值因高頻率而偏移。但是提高開關頻率的同時也增加了開關損耗,這同樣會導致工作效率的降低。由于其他重要電路設計之間相互作用會影響器件性能這一特點,所以僅僅靠增加開關頻率并非易事。近期,開關頻率一直保持在500kHz左右而電感在4.7~10μH,這些因素包括提供更好的電路設計,改進材料,完善制造技術,都能讓開關頻率保持在1MHz以下。然而,內部電路的進一步細化使得開關頻率已經高達3MHz,但同時電感值也低于了2.0H。據推算,6~8MHz的開關頻率以及低于1H的電感值并不常見,這就導致了電感器小型化的戲劇性。
2.較高的開關頻率
1-A級電感器的發展趨勢是小包裝,低電感和更快的開關頻率。例如擁有300kHz開關頻率但面積只有16或36mm2的電感器將被廣泛使用。使用一個9mm2大小的電感器能將開關頻率提高為1.5MHz,這表明在增加開關頻率的同時也在相應地減小尺寸。未來要提供更精細電感器的關鍵在于部件制造商是否有能力通過在電路設計、材料和制造等方面的不斷進步來降低電感和提高開關頻率。手機用電感器技術的進步已經在包裝厚度上顯現了出來,例如,從兩三年前2mm到現在的1mm。該技術的顯著改善讓靠超薄元件支持器件的微型化趨勢持續吸引著全球電子產品消費市場。即便如此,單純靠使用較小的電感器也不是一個完善的解決方案。
3.繞線改善
規模較小的便攜式設備需要更緊湊的更高效率的DC/DC轉換器,靠這些補充設備的強大功能來最大限度的完善電池能量。盡管大的元件難以同時縮減電感尺寸和保持較低阻抗,廠商們依然在通過更好的設計,改進材料科學,提高制造技術來減少電感器尺寸。電感器是能夠把電能轉化為磁能而存儲起來的元件。電感器的結構類似于變壓器,但只有一個繞組。電感器具有一定的電感,它只阻止電流 的變化。如果電感器中沒有電流通過,則它阻止電流流過它;如果有電流流過它,則電路斷開時它將試圖維持電流不變。電感器又稱扼流器、電抗器、動態電抗器。而我們常常會根據工作頻率和過電流大小,分為高頻電感,功率電感等。功率電感是指分帶磁罩和不帶磁罩兩種,主要由磁芯和銅線組成。在電路中主要起濾波和振蕩作用。而不管是功率電感還是高頻電感,都在電路中發揮了重要作用。
功率電感的主要特點為:1、平底表面適合表面貼裝。2、優異的端面強度良好之焊錫性。3、具有較高Q值,低阻抗之特點。4、低漏磁,低直電阻,耐大電流之特點。5、可提供編帶包裝,便于自動化裝配。
而功率電感又是在電路中發揮了重要的作用??偨Y一下,其在電路中的主要作用可以歸結為兩點,分別是:
?。?)阻流作用:線圈中的自感電動勢總是與線圈中的電流變化相對抗。主要可分為高頻阻流線圈及低頻阻流線圈。
(2)調諧與選頻作用:電感線圈與電容器并聯可組成LC調諧電路。即電路的固有振蕩頻率f0與非交流信號的頻率f相等,則回路的感抗與容抗也相等,于是電磁能量就在電感、電容之間來回振蕩,這就是LC回路的諧振現象。諧振時由于電路的感抗與容抗等值又反向,因此回路總電流的感抗最小,電流量最大(指f=f0的交流信號),所以LC諧振電路具有選擇頻率的作用,能將某一頻率f的交流信號選擇出來。
一般電子線路中的電感是空心線圈,或帶有磁芯的線圈,只能通過較小的電流,承受較低的電壓;而功率電感也有空心線圈的,也有帶磁芯的,主要特點是用粗導線繞制,可承受數十安,數百,數千,甚至于數萬安,當貼片電感通過的電流變化時,貼片電感中產生的直流電壓勢將阻止電流的變化。當通過電感線圈的電流增大時,電感線圈產生的自感電動勢與電當通過電感線圈的電流減小時,自感電動勢與電流方向相同,阻止電流的減小,同時釋放出存儲的能量,以補償電流的減小。流方向相反,阻止電流的增加,同時將一部分電能轉化成磁場能存儲于電感之中;因此經電感濾波后,不但負載電流及電壓的脈動減小,波形變得平滑,而且整流二極管的導通角增大。